

Preservation of Food through Packaging: Opportunities, Potentials and Challenges for Active and Intelligent Packaging

> Selçuk Yildirim Zurich University of Applied Sciences 8820 Waedenswil, Switzerland

















| Active Packaging for Food                                         | zh aw                     |
|-------------------------------------------------------------------|---------------------------|
| Active packaging has potential to be used                         |                           |
| - to extend the shelf life of the product (fresh produce and food | is with short shelf life) |
| - to reduce or remove preservatives from food formulations (free  | sh, clean label)          |
| - to decrease the food lost (food with short shelf lives)         |                           |
| - to enable to use particular types of packages (PET bottles)     |                           |
| <ul> <li>to simplify processing (additional hurdles)</li> </ul>   |                           |
| - to prepare and to present the food (microwave susceptors)       |                           |
| - to develop new products (Some products could be only possible   | to develop if active      |
| packaging technologies are applied to preserve the quality)       |                           |
|                                                                   |                           |
|                                                                   |                           |



| Active Packaging Market |  |
|-------------------------|--|
|                         |  |

```
• The largest segment is oxygen scavengers with a 25.7% share

    The largest segment is oxygen scavengers with a 25.7% share
    Moisture scavengers have 25.3%, self-venting films have 14.4% and ethylene
    scavengers and emitters have 9.4%
```

zh aw

aw mining

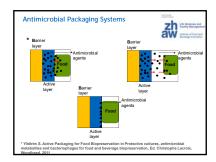
```
The fastest growth is recorded in antioxidants, although volumes are small, 
followed by temperature controlled packaging, antibacterial films and ethylene 
scavengers and emitters.
```

```
    Food is the largest segment with an 80.1% share; beverages have 10.1% and non-
food 9.8%
```

```
• The fastest growing segments are ready meals, fresh fruit and vegetable
beverages
```

| Active packaging         | Example of benefits                                | Possible food applications                 |
|--------------------------|----------------------------------------------------|--------------------------------------------|
| Antimicrobial releasers  | Inhibition of growth of pathogens and spoilage     | Fresh meat, processed meat, fish, bread,   |
|                          | microorganisms on food                             | cheese, cakes                              |
| Carbon dioxide releasers | Inhibition of growth of aerobic bacteria and molds | Fresh meat, fish, cakes                    |
| Antioxidant releasers    | inhibition of oxidation of fats and oils           | Snack foods, dried foods, meat             |
| Playour releasers        | Enhancing the flavour of food                      | Cereals, dried foods                       |
| Ethylene releasers       | Accelerated ripening                               | Fruits, vegetables                         |
| Oxygen absorbers         | Inhibition of exidation of food component and      | Bread, snack foods, dried foods, wine, cak |
|                          | growth of aerobic bacteria, yeast and molds        | tea, nuts, milk powder                     |
| Moisture absorbers       | Remove the excess moisture                         | Snack foods, cereals, dried foods,         |
|                          |                                                    | sandwiches                                 |
| Ethylene absorbers       | Reduce the rate of ripening                        | Fruits, vegetables                         |
| Coston disside absorbers | Prevention of bursting of the package              | Coffee                                     |
|                          | Prevension or bursting or the package              | Coree                                      |

-

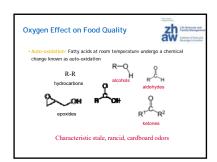

Active Packaging Systems for Food



## Introduction

- Antimicrobial packaging can help to maintain food quality by inhibiting the growth of food spoilag s (bacteria, yeast and molds) preventing the organoleptic spoilage of the food due to the production of off flavors, unpleasant odors and slime
- can contribute to food safety by
   inhibiting the food pathogens and toxin producers (C. botulinum, L. monocytogenes, Salmonella, E. coll, S. aerous, B. cereus, Campylobacter)





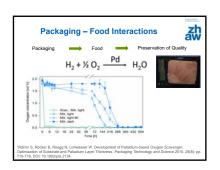


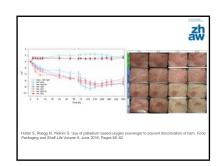

| Chemical agents                                                            | aw and                                |
|----------------------------------------------------------------------------|---------------------------------------|
| According to the EU regulations (Commission regulat                        | ion (EC) No 450/2009) active agents   |
| that are incorporated into the packaging material to                       | be released into the food should      |
| comply the legislation on food additives.                                  |                                       |
| Chemical antimicrobial agents that are released from                       | n the packaging into the food or its  |
| environment should be food grade chemicals.                                |                                       |
| <ul> <li>Non-food grade chemicals can be incorporated into p</li> </ul>    | packaging if they are not released in |
| the food (specific migrations).                                            |                                       |
| <ul> <li>Fungicides such as imazalil and benomyl</li> </ul>                |                                       |
| <ul> <li>Silver in polymers as an antimicrobial agent</li> </ul>           |                                       |
| <ul> <li>Several silver-ion containing zeolite or glass systems</li> </ul> | have been incorporated into many      |
| polymers, such as polyethylene, polypropylene, and<br>available            | polyamide and become commerciall      |



| Oxyge | n Effect on Fo                                    | ood Quali                        | ity <b>zh</b>                                   | Finding Waterpool |
|-------|---------------------------------------------------|----------------------------------|-------------------------------------------------|-------------------|
|       |                                                   | O <sub>2</sub>                   |                                                 |                   |
|       | Oxidation                                         | ]                                | Growth of aerobic microorganisms                |                   |
|       | Discoloration<br>and rancidity                    |                                  | Molds and other<br>Spoilage organisms           |                   |
|       | Degraded     appearance and     nutritional value | Impaired<br>sensory<br>qualities | Lost freshness<br>unpleasent<br>taste and aroma |                   |
|       | F                                                 | L<br>Reduced Shelf Ii            | le l                                            |                   |

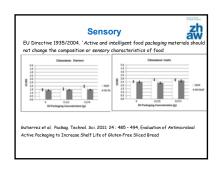


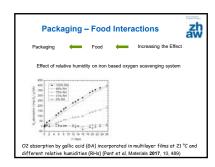




| thylene    | Absorber                               | s - Affec                      | ts of Ethylenet                    |
|------------|----------------------------------------|--------------------------------|------------------------------------|
| Fruit      | Intensity of<br>ethylene<br>production | Sensibility<br>for<br>ethylene | Affecs of ethylene                 |
| Apple      | ++                                     | +                              | Tisue softening                    |
| Kiwi       | ++                                     | +                              | Tisue softening                    |
| Banana     | -                                      | +                              | Tisue softening                    |
| Pear       | +                                      | +                              | Tisue softening                    |
| Grapefruit |                                        | -                              | Mould growth                       |
| Melon      | +                                      | -                              | Tisue softening                    |
| Tomato     |                                        | +                              | Tisue softening                    |
| Assparagus |                                        | +                              | Toughening and thickening of fibre |
| Cucambers  | -                                      | +                              | Turns yellow and become soft       |

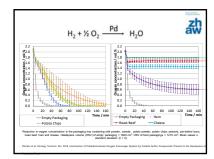


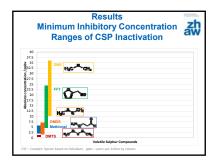



| Packa     | Packaging – Food Interactions |      |               |                            |  |  |  |  |  |  |
|-----------|-------------------------------|------|---------------|----------------------------|--|--|--|--|--|--|
| Packaging | $\rightarrow$                 | Food | $\rightarrow$ | Preservation of Quality    |  |  |  |  |  |  |
| Packaging | $\rightarrow$                 | Food | $\rightarrow$ | Negative Effect on Quality |  |  |  |  |  |  |
| Packaging | -                             | Food | -             | Increasing the Effect      |  |  |  |  |  |  |
| Packaging | -                             | Food | -             | Decreasing the Effect      |  |  |  |  |  |  |
|           |                               |      |               |                            |  |  |  |  |  |  |







| Migration                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                  |       |                             |       |      |   |   | aw    |                                      |       |       |     |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------|-------|-----------------------------|-------|------|---|---|-------|--------------------------------------|-------|-------|-----|
| Algeba                                                                                | r Velaer for Dele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cled Campou                          | nde, Zispi                       | ecos; |                             |       |      |   |   |       | inter intern                         |       | where |     |
|                                                                                       | AU AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 841                                  | 148.7                            |       |                             | 141   | HIT. |   |   | HE HE |                                      | 417   |       | HID |
| a lapana<br>Likewei IV<br>WONDER II<br>remensikelingen II<br>Junglighen II<br>Stender | 0 + 12 102 + 12<br>0 + 12 102 102 + 12<br>12 + 12 102 102 + 12<br>0 + 12 7 2 + 0 + 10<br>0 + 10 + 10 + 10<br>0 + 10 + 10 + 10 + 10<br>0 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + | 10.101<br>10.112<br>10.112<br>10.112 | 20 - 108<br>20 - 108<br>21 - 108 |       | 40-33<br>34 * 93<br>80 - 58 |       |      | - | - |       | 541.11<br>541.11<br>541.11<br>541.11 | 10-03 | 70-13 |     |
| GC-MS chron                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                  |       |                             |       |      |   |   |       |                                      |       |       |     |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                  | ~     |                             |       |      | - |   |       |                                      |       |       |     |
| water used as                                                                         | simulant ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tracted b                            | y SPN                            | I (To | var e                       | tal.  | J.   |   |   |       | Ι.                                   | 1     |       | 11  |
| Agric. Food Cl                                                                        | hem., Vol. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3, No. 13                            | , 2005                           | , Miş | gratio                      | n     |      |   |   |       | 111                                  | 1.1   |       |     |
| Studies To Ass                                                                        | ess the Sal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lety in Us                           | e of a                           | New   | Anti                        | oxida | int  |   |   |       | 1LI                                  | .1.1  |       | 114 |
|                                                                                       | ina (Rosem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | any extra                            | ct)                              |       |                             |       |      | - |   |       |                                      |       |       |     |











| Results<br>Volatile Sulphur Compounds (VSCs) in Foods |                         |               |                 |                    |        |       |  |  |  |
|-------------------------------------------------------|-------------------------|---------------|-----------------|--------------------|--------|-------|--|--|--|
| Volatile sulphur compounds<br>(VSCs)                  | Beef<br>(Roast<br>Beef) | Pork<br>(Ham) | Potato<br>Chips | Roasted<br>Peanuts | Cheese | Bread |  |  |  |
| Dimethyl sulphide<br>(DMS)                            | x                       |               | x               | x                  | x      | ×     |  |  |  |
| Dimethyl disulphide<br>(DMDS)                         | x                       | x             | x               | x                  | x      | x     |  |  |  |
| Dimethyl trisulphide<br>(DMTS)                        | ×                       | x             |                 | x                  | x      | ×     |  |  |  |
| (FFT)                                                 | x                       | ×             | ×               | x                  |        |       |  |  |  |
| Methional<br>(MET)                                    | x                       | ×             | ×               | x                  | x      | ×     |  |  |  |

| Summary                                                     | zh<br>aw |
|-------------------------------------------------------------|----------|
| - Why                                                       |          |
| - For what                                                  |          |
| <ul> <li>Which food?, what conditions,</li> </ul>           |          |
| <ul> <li>Interactions between packaging and Food</li> </ul> |          |
| <ul> <li>Migration and food Safety</li> </ul>               |          |
|                                                             |          |
|                                                             |          |
|                                                             |          |
|                                                             |          |

