Chromatogeny An History of an Innovative Technology

Philippe Martinez, David Guérin Ji Young Kwon

What is chromatogeny?

Paper tissue grafted by chromatogeny

Source : Daniel Samain

- A breakthrough green chemistry process that brings hydrophobicity to hydrophilic reactive substrates
 - Lignocellulosic fibres, papers, starch, minerals...
- A solvent free technology, suitable for R2R processes
- First developments in the paper industry
 - Applied to papers and boards
 - To bring water resistance while keeping converting ability, recyclability and biodegradability
 - Applied to coated papers
 - To protect water sensitive barrier layers from moisture keeping recyclability and biodegradability

Basic principle of chromatogeny

- Use the reaction of Fatty Acid Chlorides with hydroxyl groups to obtain fatty esters
 - Protect water sensitive material by grafting fatty alkyl chain (fatty acid chloride) at the surface of a layer containing OH groups

 Use the liquid – vapour equilibrium to get an ultrafast solvent free reaction

du papier

Basics of chromatogeny at pilot/industrial scale

- Deposition of a weak amount of liquid reagent at the paper surface
 - 0.2 to 0.8g/m²
- Heating of the reagent (130°C to 190°C) and paper surface to increase the vapour concentration
 - The vapour reacts within couple of seconds
- Propagation of the reaction by diffusion, formation of ester bonds between fatty acid and cellulose and continuous withdrawal of HCI
 - Diffusion depth ~ 100µm

du papier

Potential of chromatogeny

- Chromatogeny helps protecting water sensitive materials
- To treat uncoated papers
 - Cellulose is a natural reactive substrate for chromatogeny

To treat coated papers

- Requires to use a coating layer that is reactive to chromatogeny
- Compatibilizing agents for non-reactive surfaces

Performances of grafted uncoated papers and boards

Property	Tests/ Standard	Influence of grafting	Comments
Water absorption capacity	Cobb 60s Iso 535	∿12-15g/m²	Data for a 75g/m ² blotting paper
Water absorption capacity	Cobb 300s Iso 535	∿15-18g/m²	Data for a 75g/m ² blotting paper
Oil absorption capacity	Cobb 60s Modified Iso 535	\Leftrightarrow	
Water contact angle		₽ 120-130°	Hydrophobic
Capillary rise	Klemm method ISO 8787 – 1987	∿ 0cm	No edge wicking
Surface energy		∿ 22-23 mJ/m²	Polar component decreased to 0mJ/m ²
Wet strength	ISO 3781 – 2011 ISO 12625 – 5	⊘ 17-25%	But repulpable

Performances of grafted uncoated papers and boards

Property	Tests/ Standard	Influence of grafting	Comments
Breaking length	ISO 1924-2:2008	\Leftrightarrow	No ageing
Tear strength	ISO 1974:2012	\Leftrightarrow	No ageing
Brightness	ISO 2490	\Leftrightarrow	No change of colour neither
Roughness	ISO 8791-2:2013	\Leftrightarrow	
Friction coefficient	ISO 15359	⊴⇔	Depends on paper composition
Recyclability	EN 13430	\Leftrightarrow	What is recyclable remains recyclable
Biodegradability	EN 13432	\Leftrightarrow	What is biodegradable remains biodegradable
Printability		\Leftrightarrow	Offset, flexo (water/uv), roto
Glueability	FINAT test method n°1	\Leftrightarrow	Water based/hotmelt

 Main target : to improve water resistance of cellulosic based materials, i.e. manufacture of waterproof papers

• Main Markets :

- Corrugated board resistant to rain/water
- Health and medical papers
- Technical paper for the industry and buildings
- Filters
- Papers for households, Papers for agriculture
- Hydrophobic fibres/mats for composite market
- And many others...

Performances of grafted PVOH coated papers and boards

Property	Tests/ Standard	Influence of grafting	Remarks
Water absorption capacity	Cobb 60s Iso 535	∿0-1 g/m²	50g/m ² paper covered with 3g/m ² of PVOH
Water absorption capacity	Cobb 1800s Iso 535	∿<5g/m²	 Paper coverage and grafting quality
Water contact angle		∕∂120-130°	Hydrophobic
Oil absorption capacity	Cobb 1800s Iso 535	⇔ 1g/m²	Both grease and water barrier!
Kit test	Tappi UM 557	10-12	
Surface energy		20-22mJ/m ²	No polar component
WVTR (23°C-50%RH)	T 448 om-97	<0.3g/m²/day	Quite similar to ungrafted
WVTR (38-90%RH)	T 464 om-01	<300g/m²/day	Value >3000 for ungrafted material
OTR (23°C-0%RH)	ISO 15105-2	5 <cm<sup>3/m²/day/bar</cm<sup>	Quite similar to ungrafted
Mineral Oil barrier		Excellent	Quite similar to ungrafted

Performances of grafted PVOH coated papers and boards

Property	Tests/ Standard	Influence of grafting	Comments
Recyclability	EN 13430	\Leftrightarrow	What is recyclable remains recyclable
Biodegradability	EN 13432	\Leftrightarrow	What is biodegradable remains biodegradable
Glueability	FINAT Test method n°1	<u>የ</u> አ	Water based Hotmelt (corona /plasma)
Release	FINAT Test method n°1 & 3	\bigtriangledown	Medium release grades

 Main target: to develop medium and high barrier properties for coated papers and boards

• Potential markets:

- Release papers
- Baking papers
- Sacks, bags, wrapping papers
- Lids
- Box Boards, trays, cups, plates
- and many others....

Patents around Chromatogeny

Patents and Main Players

15 players identified

Chromatogeny = Solvent free use of fatty acid chlorides + cellulosic substrates

Upscaling chromatogeny at large scale

Partnership project

• March 2014 \rightarrow May 2017

Runs pilot trials at CTP Advises TKP for the building of the machine Assists TKP in the start up of the machine

Brings market expectations Defines product specifications Builds and operates chromatogeny machine

Coordinates the project Drives product developments

An Industrial reality

History of TKP

Behind Everyday Things TK POLYMER TKPolymer co., Ltd." 1986 Established Taekyung Chemicals 1989 Moved to the factory in Yangju; adopted the solvent-free silicone technology **1996** Obtained the patent on manufacturing non-PE release paper 2002 Established TKPolymer co., Itd. 2008 Established the mass-production system for non-PE release paper in all paper types. 2009 Obtained ISO 14001, an environmental certification 2011 Built the second factory at Dongducheon 2013 Installed high-speed silicone coating machine

tKP

Factory & Facilities

Dongducheon Factory (R&D Centre)

Yenghulzendow

- > 35,000m² of factory space, production
- capacity is 25.000,000m²/month

High speed silicone coating machine

- Producing up to 350 m/min
 - >> Rapid production / High quality

Regular speed silicone coating: 7 machines

Non-PE primer coating: 5 machines

Slitting: 5 machines

Gravure printing: 2 machines

Chromatogeny: 2 machines

Revision to real paper

Conclusions

A history of chromatogeny

- 18 years from invention to full scale
- Several projects in progress
- Several successes but also many failures

Some Difficulties

Identify the created value

✓ Value for lower environmental Impact

Find the right partners

✓Culture of innovation, size of company

Find the right persons

✓R&D, sales, marketing, production

Define the upscaling scenario

✓ List task to achieved, prioritize

"There will be obstacles. There will be doubters. There will be mistakes. But with hard work, there are no limits." — Michael Phelps

Thank you for your attention !

Contacting authors: Philippe.Martinez@webCTP.com David.Guerin@webCTP.com

