Comparison of the conventional molding techniques for preparation of eco composites as intelligent packaging material

Vineta Srebrenkoska¹, Svetlana Risteska²

¹Faculty of Technology, Goce Delcev University, Stip, Republic of Macedonia ²Institute for Advanced Composites and Robotics, Prilep, Macedonia

Abstract

The interest in natural fiber-reinforced polymer composites as intelligent packaging material is growing rapidly due to their high performance in terms of mechanical properties, significant processing advantages, excellent chemical resistance, low cost and low density. In this study, the compression and injection molding of polypropylene (PP) and polylactic acid (PLA) based composites reinforced with rice hulls or kenaf fibers was carried out and their basic properties were examined. Rice hulls from rice processing plants and natural lignocellulosic kenaf fibers from the bast of the plant Hibiscus Cannabinus represent renewable sources that could be utilized for composites. Maleic anhydride grafted PP (MAPP) and maleic anhydride grafted PLA (MAPLA) were used as coupling agents (CA) to improve the compatibility and adhesion between the fibers and the matrix. Composites containing 30 wt % reinforcement were manufactured by compression and injection molding, and their mechanical and thermal properties were compared. It was found that the techniques applied for manufacturing of the eco-composites under certain processing conditions did not induce significant changes of the mechanical properties. The flexural strength of the compressed composite sample based on PP and kenaf is 51. 3 MPa in comparison with 46.7 MPa for the same composite produced by injection molding technique. Particularly, PP-based composites were less sensitive to processing cycles than PLAbased composites. The experimental results suggest that the compression and injection molding are promising techniques for processing of ecocomposites. Moreover, the PP-based composites and PLA-based composites can be processed by compression and injection molding. Both composites are suitable for applications as food packaging materials.

Materials

Codes of composite samples

DOIVING	NATURAL REINFORCEMENTS		
POLYMERS			
Polyhydroxybutyrates (PHB)	Rice straw		
Polyhydroxybutyratevalerate (PHBV)	Hemp		
Poly(lactic acid) (PLA)	Jute		
Polypropylene (PP)	Sisal		
Polyethylenterephtalate (PET)	Cellulose (recycled paper)		
	Kenaf		

Compresion molding

- rice hulls / PP - rice hulls / PLA

Processing temperatures in the zones of the injection machine, °C

Composite samples	PP/K/CA	PP/RH/CA	PLA/K/CA	PLA/RH/CA	Compression modulus	GPa	1,86 ± 0,12	1,58 ± 0,09	1,74 ± 0,11	1,46 ± 0,07
	FF/IVCA	FF/NH/CA			Tensile strength	MPa	29,6 ± 3,84	22,7 ± 4,82	28,3 ± 6,54	26,7 ± 1,49
Temperature in the hopper	35-40	35-40	25-35	25-35	Teneile medulue	CDe	4 65 ± 0 025	4 79 + 0 044	2 07 + 0 22	2 76+ 0 44
Temperature in the feeding zone	120-150	120-150	110-140	110-140	Tensile modulus	GPa	1,65 ± 0,025	1,78 ± 0,014	2,87 ± 0,23	2,76± 0,11
					The mechanical p	ropertie	s of the comp	osites produc	ed by injection	molding
Temperature in the in the	150-180	150-180	140-170	140-170	Characteristics	Unit	Composite:	Composite:	Composite:	Composite:
compressing zone							PP/K/CA	PP/RH/CA	PLA/K/CA	PLA/RH/CA
Temperature in the metering zone	185-195	185-195	170-185	170-185						
					Flexural strength	MPa	40,1 ± 4,82	32,8 ± 3,44	34,1± 3,75	20,7 ± 2,82
Tomporature in the in the pozzle	100 200	100.200	195 100	195 100	Impact strength normal	kJ/m ²	57,1 ± 4,76	55,0 ± 4,13	40,7 ± 3,86	36,1 ± 3,46
Temperature in the in the nozzle	190-200	190-200	185-190	185-190	to the axis					
Injection molding		1		3	Compression strength	MPa	38,2 ± 2,93	28,1±2,43	26,5 ± 2,51	15,8 ± 1,91
					parallel to the axis					
	┢━━╊	Plastification		Packing/Cooling	Compression strength	GPa	27,8 ± 2,27	23,5 ± 2,44	22,6 ± 2,01	13,6 ± 1,83
					normal to the axis					
		Injection		Demold/Ejection	Tensile strength	MPa	23,6 ± 2,14	17,9 ± 1,24	21,8 ± 1,02	20,6 ± 0,91

	Matrix (wt%)		Fiber	/Filler	Coupling agent (CA)		
Codes	Туре	Content (wt%)	Type	Content (wt%)	Туре	Content (wt%)	
PP/K/CA	PP	65	Kenaf fibers	30	MAPP	5	
PP/RH/CA			Rice Hulls				
PLA/K/CA	PLA	65	Kenaf fibers	30	MAPLA	5	
PLA/RH/CA			Rice Hulls				

The mechanical properties of the composites produced by compression molding

Characteristics	Unit	Composite:	Composite:	Composite:	Composite:	
		PP/K/CA	PP/RH/CA	PLA/K/CA	PLA/RH/CA	
Flexural strength	MPa	51,3 ± 4,84	42,6 ± 3,45	46,7± 3,83	28,8 ± 3,14	
Flexural modulus	GPa	2,11 ± 0,07	1,94 ± 0,08	2,05 ± 0,11	3,03 ± 0,09	
Impact strength	kJ/m²	71,4 ± 4,67	69,2 ± 3,83	54,3 ± 3,49	48,7 ± 4,16	
Compression strength	MPa	47,2 ± 2,93	36,3 ± 2,39	34,5 ± 3,11	21,6 ± 2,67	
Compression modulus	GPa	1,86 ± 0,12	1,58 ± 0,09	1,74 ± 0,11	1,46 ± 0,07	
Tensile strength	MPa	29,6 ± 3,84	22,7 ± 4,82	28,3 ± 6,54	26,7 ± 1,49	
Tensile modulus	GPa	1,65 ± 0,025	1,78 ± 0,014	2,87 ± 0,23	2,76± 0,11	

Funded by the Horizon 2020 Framework Programme f the European Union