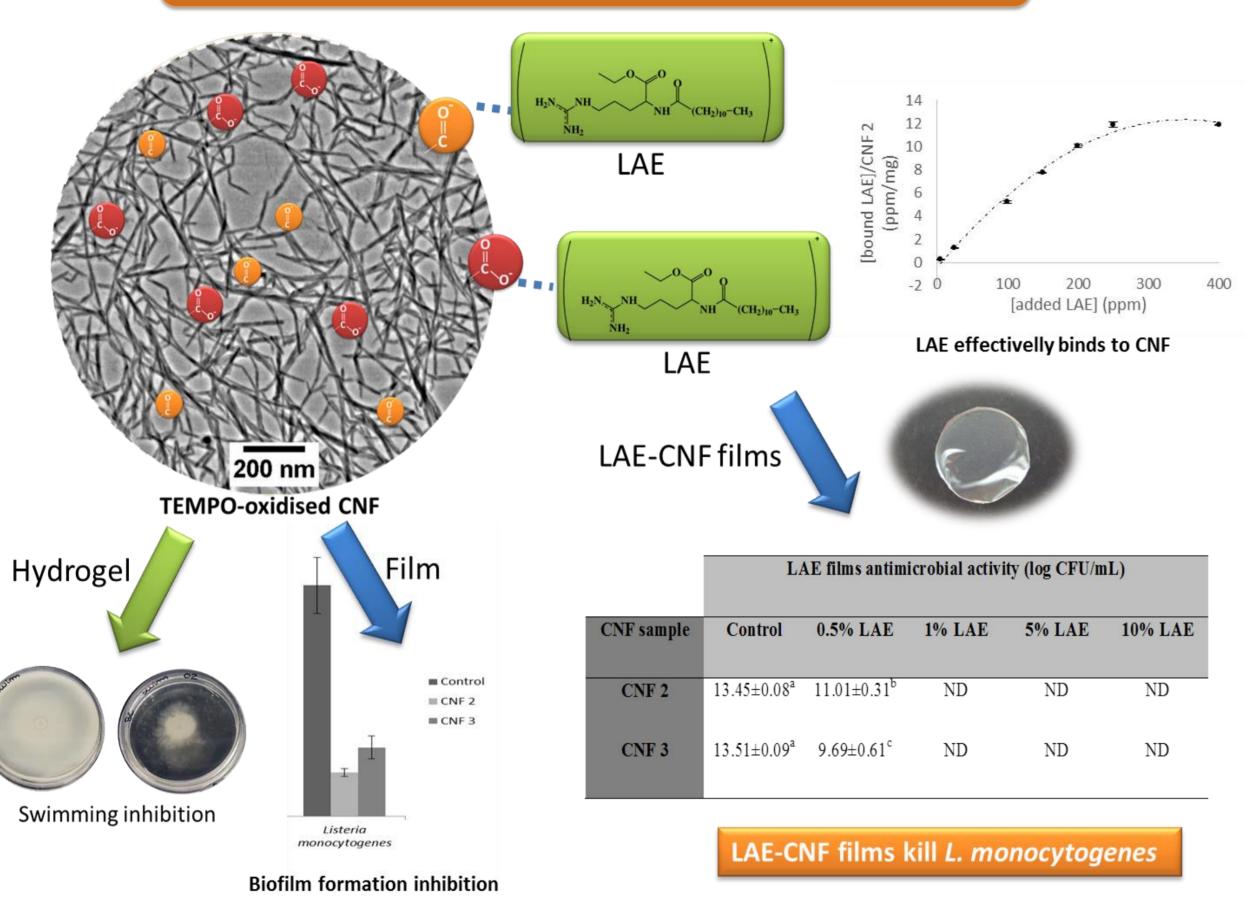


Universidad Zaragoza

Antimicrobial activity of

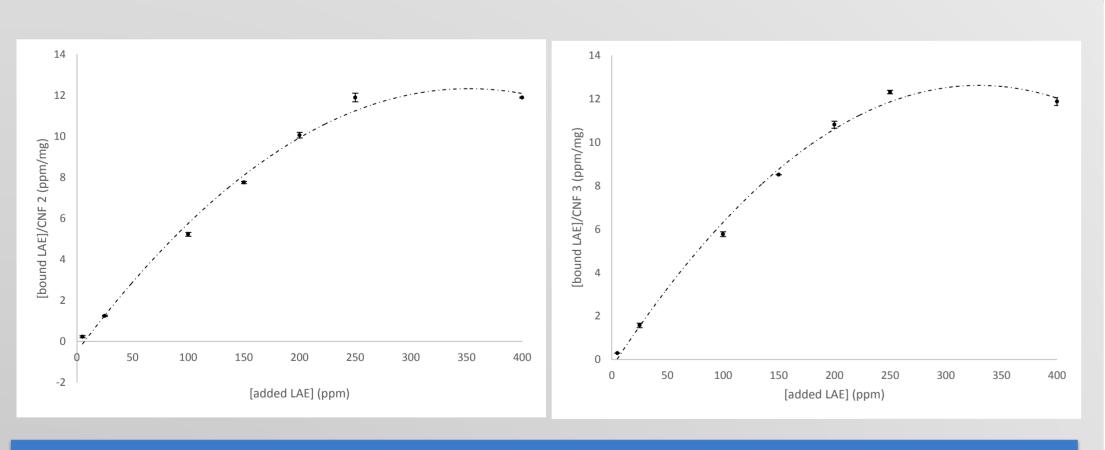
Cellulose Nanofibril films with Ethyl Lauroyl Arginate

Filomena Silva^{1,2}, Nicolás Gracia², Birgitte H. McDonagh³, Cristina Nerín⁴, Gary Chinga-Carrasco³ filomena@unizar.es


¹ARAID – Agencia Aragonesa para la Investigación y Desarollo, Zaragoza, Spain ²FV-UNIZAR – Faculty of Veterinary Sciences, University of Zaragoza, Spain ³RISE-PFI – Trondheim, Norway

⁴I3A – Aragón Institute of Engineering Research, University of Zaragoza, Spain

Introduction


Traditional food packaging is made from non-degradable polymers that pose an environmental threat if not disposed of properly. Cellulose nanofibrils (CNFs) are particularly suited for sustainable packaging applications as they are biobased, renewable, lightweight and easy to compost. Ethyl recycle or arginate (LAE) is an antibacterial compound with proved activity against several types of bacteria that is approved by EFSA as a food preservative in heattreated meat products

Graphical abstract

Results and Discussion

CNF affinity to LAE

CNF films charge and roughness affect LAE binding CNF films can bind LAE concentrations up to 15 ppm/mg CNF

	2.5%	6 LAE	5% LAE		
CNF sample	[LAE] _{max} (ppm)	[LAE] _{wash} (ppm)	[LAE] _{max} (ppm)	[LAE] _{wash} (ppm)	
CNF 2	16	NQ	32	NQ	
CNF 3	16	NQ	32	NQ	

No significant LAE release from the CNF films after washing

CNF-LAE films anti-Listeria action

	LAE films antimicrobial activity (log CFU/mL)					
CNF sample	Control	0.5% LAE	1% LAE	5% LAE	10% LAE	
CNF 2	13.45±0.08	11.01±0.31	ND	ND	ND	
CNF 3	13.51±0.09	9.69±0.61	ND	ND	ND	

CNF-LAE 0.5% films have a bacteriostatic action against L. monocytogenes whereas concentrations of 1% and higher exhibited a bactericidal action

Inhibition halo (mm)							
0.5% LAE	Washed	Non-washed	1% LAE	Washed	Non-washed		
CNF 2	22.41	24.81	CNF 2	24.60	26.03		
CNF 3	20.00	22.80	CNF 3	25.55	25.56		
2.5% LAE	Washed	Non-washed	5% LAE	Washed	Non-washed		
CNF 2	25.92	27.66	CNF 2	26.28	29.60		
CNF 3	26.53	28.27	CNF 3	26.12	29.54		

Both washed and non-washed films are effective against L. monocytogenes with the higher inhibition halos at higher LAE concentration

Effective LAE binding to CNF films

CNF-LAE films have anti-listerial activity

Acknowledgements