



Funded by the Horizon 2020 Framework Programme of the European Union

### SEQUENTIAL SUBCRITICAL WATER EXTRACTION FOR RICE HUSK VALORIZATION, OBTAINING BIOACTIVE XYLANS AND CELLULOSE NANOCRYSTALS

SHORT TERM SCIENTIFIC MISSION (STSM)

Raquel Requena Peris



Insitute of Food Engineering for Development Universitat Politècnica de València

Riga, 5 June

## THE INSTITUTIONS





01/09/2017 - 30/11/2017





Home institution:

Universitat Politècnica de València Valencia, Spain

# JUSTIFICATION

#### Rice husks (RH)

By-product from the food industry



- Hemicellulose fraction (20-30%) made up of substituted **arabinoxylan (AX)** with potential food, medical, and pharmaceutical applications.
- High cellulose content (30-40%) for producing cellulose nanocrystals (CNCs).

AX: Bioactive compounds

**CNC:** Reinforcement materials



Food Packaging Materials

### Integral valorization

- 1) Sequential subcritical water extraction (SWE)
- 2) Alkali extraction

√



 Preserve the molecular functionalities of the isolated hemicellulose fractions





## **EXPERIMENTAL DESIGN**



# WORKING PLAN



#### Pretreatment: Wiley Mill



Lower particle size improves the extraction Particle size: 20 mesh.

### **ISOLATION OF THE HEMICELLULOSES**

#### A) Subcritical water extraction



Sequential fractionation of hemicelluloses at different times: 5, 15, 30 and 60 min. 160 °C, deionised water Dionex<sup>™</sup> ASE<sup>™</sup> 350

#### B) Alkali extraction



4 wt% in NaOH (4.5 w/v) 80 °C; 2h 3 different treatments Dialysis of the resulting extracts

### **ISOLATION OF THE CNCS**

#### Bleaching

4 wt% in 1water:1buffer acetate: 1aqueous chlorite (1.7%) 5 different treatments at 80 °C; 4h

#### Acid Hydrolysis

4 wt% in 65 wt% sulphuric acid 45 °c; 40 min.

#### **CNC** purification



- **1.** Successive centrifugations: until constant supernatant pH; 25000 g; 20 min
- 2. Dialysis: purified water 1 week
- 3. Sonication: 10 min; 7,125 W/ml
- **4. Centrifugation:** remove higher particles

## Freeze-dry extracts and residues



# WORKING PLAN



### **CHARACTERIZATION OF THE RESIDUES**

#### Chemical composition analyses

Soxhlet extraction NREL's LAP



**Klason lignin.** Tappi method T222 om-o6



Ash content TGA



Monosaccharide composition Acid hydrolysis and HPAEC-PAD



Scanning Electron Microscopy (SEM)



Atomic Force Microscopy (AFM)



Fourier Transform Infrared Spectrometry (FTIR)



X-Ray Diffraction Analysis (XRD)



Thermogravimetric Analysis (TGA)



# WORKING PLAN



### **CHARACTERIZATION OF THE EXTRACTS**

**Monosaccharide composition** Acid hydrolysis and HPAEC-PAD



**Molar mass distribution** Size-Exclusion Chromatography



Antioxidant activity. DPPH scavenging activity



#### Antibacterial activity. MTT assay



### **RESULTS.** Morphological changes of the residues



800 ur

300 um



Figure 1. Visual aspect of the samples after the different treatments

**Figure 2.** SEM of the samples after the different treatments

## **RESULTS.** Chemical composition of the residues



|                    | <b>Rice Husk</b> | Alkali process |           | Hydrothermal process |          |           |            |
|--------------------|------------------|----------------|-----------|----------------------|----------|-----------|------------|
|                    |                  | Alkaline       | Bleaching | Hydrolysis           | SWE      | Bleaching | Hydrolysis |
| Yield <sup>a</sup> | 100              | 54.4±0.1       | 65±2      |                      | 69±1     | 58±1      |            |
| Fuc                | <0.1             | <0.1           | <0.1      | <0.1                 | <0.1     | <0.1      | <0.1       |
| Ara                | 1.8±0.1          | 2.16±0.03      | 1.35±0.05 | <0.1                 | 0.4±0.1  | 0.4±0.1   | <0.1       |
| Rha                | <0.1             | <0.1           | <0.1      | <0.1                 | <0.1     | <0.1      | <0.1       |
| Gal                | 0.9±0.2          | 0.69±0.02      | 0.20±0.03 | <0.1                 | <0.1     | <0.1      | <0.1       |
| Glc                | 35.1±0.4         | 60±2           | 73.5±0.1  | 96±5                 | 41±1     | 60±2      | 95±6       |
| Xyl                | 17±1             | 12.2±0.2       | 17.0±0.4  | 1.0±0.1              | 11.1±0.2 | 15±3      | <0.1       |
| Man                | <0.1             | <0.1           | <0.1      | <0.1                 | <0.1     | <0.1      | <0.1       |
| GalA               | <0.1             | <0.1           | <0.1      | <0.1                 | <0.1     | <0.1      | <0.1       |
| GlcA               | <0.1             | <0.1           | <0.1      | <0.1                 | <0.1     | <0.1      | <0.1       |
| Total              | 55±1             | 75±2           | 92.0±0.2  | 96±5                 | 53±1     | 60±2      | 95±6       |
| carbohydrates      |                  |                |           |                      |          |           |            |
| Cellulose          | 35.1±0.4         | 60±2           | 73.5±0.1  | 96±5                 | 41±1     | 60±2      | 95±6       |
| Hemicellulose      | 19±2             | 15.0±0.2       | 18.4±0.3  | 1.0±0.1              | 11.6±0.2 | 15±3      | <0.1       |
| Klason lignin      | 33.8             | 20.5           | 9.0       | N/A                  | 39.5     | 25.0      | N/A        |
| Ash                | 17.0±0.2         | 6±1            | 3.5±0.2   | n.d                  | 17±1     | 16.6±0.1  | 0.4±0.2    |
| Extractives        | 5.46±0.01        | -              | -         | -                    | -        | -         | -          |

Table 1. Yield and chemical composition (in %wt) after the different steps of the isolation of cellulose nanocrystals from rice husk

<sup>a</sup>The gravimetric yields for each treatment were calculated based on the total dry weight (100%) of the previous treatment n.d: not detected; N/A: non applicable





Figure 3. FTIR spectra for the different materials obtained throughout both processes

### **RESULTS.** Crystallinity of the residues (XRD)





**Table 2.** Crystallinity index (Crl) aftereach step of both CNC isolation processes

|         | Crl (%)    |
|---------|------------|
| RH      | 40.1 ± 0.5 |
| R-A     | 71.3 ± 0.8 |
| R-A-B   | 72.3 ± 0.7 |
| CNC-A   | 80.±0.9    |
| R-SWE   | 50.0 ± 2.1 |
| R-SWE-B | 58.4 ± 1.8 |
| CNC-SWE | 53.0       |

Figure 4. XRD patter of the residues along the conversion from macro to nano dimensions

### **RESULTS.** Morphology of the CNCs (AFM)





**Figure** 5. AFM analysis of the CNCs isolated from rice husk through the alkaline process and the hydrothermal process: particle diameter and length. Averaged diameter and length calculated from 100 individual CNC particles using AFM



| Tables T   |             | at via na va na at a va | after a since hugh | مصالحه المتناح والالما المصم | الممم المما ممط  | منطيتمان سمط ممسمامم |
|------------|-------------|-------------------------|--------------------|------------------------------|------------------|----------------------|
| Table 3. T | nermouravin | etric parameters        | or the rice husk   | l and their alkaline.        | , pleacheù anù r | ivuroivzeu samples.  |
| · · · J    | 5 -         |                         |                    |                              |                  | /···/···             |

| Sample  | [25-150] °C   |                       | [180-550] °C            |               |                       |
|---------|---------------|-----------------------|-------------------------|---------------|-----------------------|
|         | Mass loss (%) | T <sub>max</sub> (°C) | T <sub>onset</sub> (°C) | Mass loss (%) | T <sub>max</sub> (°C) |
| RH      | 2.77±0.04     | 70.3±0.9              | 252.3±1.3               | 55.0±0.4      | 345.4±0.8             |
| R-A     | 3.01±0.05     | 67.2±2.1              | 274.6±0.5               | 63.6±1.3      | 330.8±0.1             |
| R-A-B   | 2.86±0.09     | 60.5±4.2              | 303.0±0.3               | 74.7±0.2      | 346.8±0.1             |
| CNC-A   | n.d           | n.d                   | 223.1±3.2               | 14.2±2.8      | 271±6/315±6/416±5     |
| R-SWE   | 2.13±0.10     | 59.3±0.4              | 318.3±0.3               | 59.9±0.3      | 363.8±0.5             |
| R-SWE-B | 2.63±0.01     | 55.03±0.6             | 301.8±1.3               | 63.5±0.4      | 344.4±0.1             |
| CNC-SWE | n.d           | n.d                   | 173.9±2.4               | 8.3±0.4       | 216±1/354±2/421±1     |

Degradation patter of the CNCs  $\rightarrow$  3 overlapping steps:

1<sup>st</sup> at lower temperature: sulphate groups that catalyse the dehydration process of cellulose

2<sup>nd</sup> breakdown of the more accessible region in the crystal interior

3rd at higher temperature: less accessible crystal interior of the CNCs

### **RESULTS.** Monosaccharide composition of the extracts





Figure 6. Monosaccharide composition of the extracts after different times of SWE and after each consecutive alkaline extraction.

## **RESULTS.** Monosaccharide composition of the extracts



**Table 4**. Monosaccharide composition (in %wt) of the rice husk extracts resulting from the three consecutive alkaline extractions and the sequential fractionation by subcritical water extraction.

|                        | Alkaline process |                 |                 | Hydrothermal process |          |          |          |
|------------------------|------------------|-----------------|-----------------|----------------------|----------|----------|----------|
|                        | 1 <sup>st</sup>  | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 5 min                | 15 min   | 30 min   | 6o min   |
| Fuc                    | <0.1             | <0.1            | <0.1            | <0.1                 | <0.1     | <0.1     | <0.1     |
| Ara                    | 5.2±2.1          | 8.5±0.9         | 6.7±2.0         | 1.7±0.1              | 12.8±0.9 | 12.1±1.0 | 7.6±0.5  |
| Rha                    | <0.1             | <0.1            | <0.1            | <0.1                 | <0.1     | <0.1     | <0.1     |
| Gal                    | 2.8±2.1          | 1.6±0.1         | 1.3±0.3         | <0.1                 | 3.2±0.1  | 4.8±0.4  | 4.2±0.2  |
| Glu                    | 38.5±6.5         | 2.9±0.4         | 4.0±2.4         | 80.4±11.4            | 42.8±5.0 | 6.1±1.3  | 2.8±0.3  |
| Xyl                    | 33.6±5.5         | 60.4±2.6        | 47.0±9.6        | 2.1±0.2              | 18.3±0.7 | 53.6±6.8 | 73.2±0.9 |
| Man                    | <0.1             | <0.1            | <0.1            | <0.1                 | <0.1     | <0.1     | <0.1     |
| MeGlcA                 | 0.6±0.2          | 2.9±0.4         | 2.7±1.0         | <0.1                 | <0.1     | 2.3±0.4  | 2.2±0.3  |
| GalA                   | 0.3±0.1          | 0.6±0.1         | 0.3±0.1         | <0.1                 | <0.1     | <0.1     | <0.1     |
| GlcA                   | 0.4±0.1          | 0.6±0.1         | 0.5±0.1         | <0.1                 | <0.1     | 0.8±0.1  | 0.7±0.1  |
| Xylan content (%)ª     | 40±5             | 72±4            | 57±13           | 3.8±0.3              | 31±2     | 69±7     | 83.7±1.4 |
| Total<br>carbohydrates | 81.3±10.2        | 77.5±3.9        | 62.4±10.6       | 85.5±11.6            | 77.0±6.3 | 79.7±8.9 | 90.7±1.7 |

### **RESULTS.** Molar mass distributions of the extracts





**Table 5.** Number-average molar mass (Mn) andweight-average molar mass (Mw)

|             | Mn    | Mw     |
|-------------|-------|--------|
| E-A-1       | 12150 | 271700 |
| E-A-2       | 8784  | 35970  |
| E-A-3       | 8128  | 35230  |
| E-SWE-5min  | 36810 | 691700 |
| E-SWE-15min | 4291  | 250600 |
| E-SWE-3omin | 3254  | 59990  |
| E-SWE-6omin | 2705  | 6499   |
|             |       |        |

**Figure 7.** Molar mass distributions of the rice husk extracts resulting from (A) the three consecutive alkaline extractions and (B) the sequential fractionation by subcritical water extraction

## **RESULTS.** Bioactivity of the hemicellulosic extracts



#### Antioxidant activity



# APPLICATIONS



### Arabinoxylans:

Food packaging materials Food fomulations







Extend food shelflife Improving food quality





**CNCs:** Reinforcing materials



Improving mechanical properties of packaging materials



**Acknowledgement:** ActInPak is supported by COST (European Cooperation in Science and Technology).

COST is a funding agency for research and innovation networks. Our actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.

<u>www.cost.eu</u>



ActInPak website: www.actinpak.eu