

QUALITY CHANGES OF ELECTROSPRAY COATED APPLE SLICES DURING REFRIGERATED STORAGE

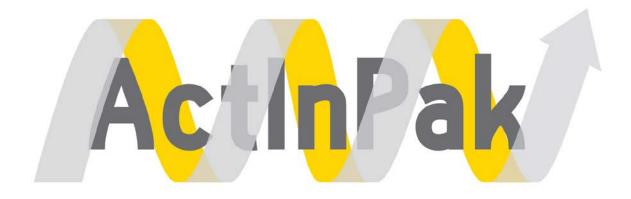
Hulya Cakmak^{1,2}, G. Ela Gurpuz², Neslihan Bozdogan², Seher Kumcuoglu², <u>Sebnem Tavman²</u>

¹Hitit University Department of Food Engineering, Corum, Turkey ² Ege University Department of Food Engineering, Izmir, Turkey, <u>sebnem.tavman@ege.edu.tr</u>

COST FP1405

ACTIVE AND INTELLIGENT FIBRE-BASED PACKAGING - INNOVATION AND MARKET INTRODUCTION

15 November, 2017



COST is supported by the EU Framework Programme Horizon 2020 > Extend the shelf life of fresh-cut apple,

- Develop a novel edible coating production method as an alternative to conventional methods,
- Determine the possibility of using w/o emulsion on a hydrophilic fruit surface.

MAIN RESULTS

- The present study showed that, the edible coatings produced with electrospraying have similar or even better results for decreasing moisture losses of fresh-cut apples.
- The amount of coating material was significantly reduced (300 times less than dip-coating) while the product quality during shelf life was improved compared to the conventional method.

ACKNOWLEDGEMENT

This work is based upon work from COST Action FP1405 ActInPak, supported by COST (European Cooperation in Science and Technology)

COST FP1405

ACTIVE AND INTELLIGENT FIBRE-BASED PACKAGING - INNOVATION AND MARKET INTRODUCTION

COST is supported by the EU Framework Programme Horizon 2020