

SLOVAK UNIVERSITY OF TECHNOLOGY

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

Institute of Physical Chemistry and Chemical Physics

Migration of nanoparticles from packaging and a sensor for the nanoparticles toxicity

Peter Šimon

COST Action FP1405 Meeting: Application and Communication of Active and Intelligent Packaging 7-9 November 2017, Tzuba Hotel, Judean Hills, Israel

INTRODUCTION

Nanomaterials - applied worldwide

Safety, implications on human and environmental health and potential risks - under discussion

Opinions - from "completely harmless and safe" to "extremely hazardous".

Nanoscale - having one or more dimensions of the order of 100 nm or less

Size of pores in human body - about 200 nm (gut), 70 nm (skin) \Rightarrow additional toxicity of NMs

Soluble and biodegradable NMs – toxicity as the bulk counterparts

Biopersistent NPs – may accumulate

Surface free energy and consequences

Surface energy

Atoms/molecules on a solid surface miss the nearest neighbours above the surface - **unsatisfied bonds exposed to the surface**.

Surface atoms /molecules convey an extra potential energy = surface free energy

Due to the huge surface energy, NMs are thermodynamically unstable or metastable and exert high chemical activity.

Properties of NPs differ from those of the bulk material

NANOPARTICLES IN FOOD

- Biopersistent micro- and nanoparticles commonly found in food:
- -silicon dioxide (SiO₂, E551),
- -magnesium oxide (MgO, E530)
- -titanium dioxide anatase (TiO₂, E171).
- -The antimicrobial properties of nanosilver are known and such properties have recently been discovered for nanozinc oxide and magnesium oxide

NANOPARTICLES IN PACKAGING

- filler Ag, ZnO, TiO₂, etc. intelligent packaging
- NPs from the matrix toxicity not tested

Migration of nanoparticles from packaging to food

Stokes-Einstein relation:

The average distance, *r*, travelled by particles:

Williams-Landel-Ferry equation for polymer melts:

$$D = \frac{k_{\rm B}T}{6\pi\eta a}$$

$$r = 2\left(\frac{Dt}{\pi}\right)^{1/2} = \left(\frac{2k_{\rm B}Tt}{3\pi^2\eta a}\right)^{1/2}$$

$$\eta(T) = \eta(T_{\rm g}) \exp\left[-\frac{C_{\rm I}(T - T_{\rm g})}{C_{\rm 2} + T - T_{\rm g}}\right]$$

$$m = \frac{n}{Sc_0} = \frac{1}{4} \left(\frac{2k_{\rm B}Tt}{3\pi^2 \eta a} \right)^{\frac{1}{2}} = \left(\frac{k_{\rm B}Tt}{24\pi^2 \eta a} \right)^{\frac{1}{2}}$$

	m [m]					
Polymer	25 °C	25 °C	4° C	4° C	–18° C	–18° C
	1 month	1 year	1 month	1 year	1 month	1 year
LDPE	$3.7 imes 10^{-7}$	$1.3 imes 10^{-6}$	$2.5 imes 10^{-7}$	$8.9 imes 10^{-7}$	$1.9 imes 10^{-7}$	$6.7 imes10^{-7}$
HDPE	$2.6 imes 10^{-7}$	9.2×10^{-7}	$1.5 imes 10^{-7}$	5.3 × 10 ⁻⁷	6.9 × 10 ⁻⁸	$2.4 imes10^{-7}$
РР	$1.5 imes 10^{-7}$	5.2×10^{-7}	$5.1 imes 10^{-8}$	1.8 imes10-7	$8.0 imes10^{-9}$	$2.8 imes10^{-8}$
PET	< 3.0 × 10 ⁻⁹	< 1.0 × 10 ⁻⁸	< 2.9 × 10 ⁻⁹	< 1.0 × 10 ⁻⁸	< 2.8 × 10 ⁻⁹	< 9.7 × 10 ⁻⁹
PS	< 2.1 × 10 ⁻⁹	< 7.4 × 10 ⁻⁹	< 2.0 × 10 ⁻⁹	< 7.1 × 10 ⁻⁹	< 2.0 × 10 ⁻⁹	< 6.8 × 10 ⁻⁹

Migration of NPs from packaging to food will be detected mainly in the case of:

- very small NPs with the radius in the order of 1 nm

- from the polymer matrices that have a relatively low dynamic viscosity,

- from the polymer matrices that do not interact with the NPs.

- These conditions could be met for nanocomposites of silver with polyolefines (LDPE, HDPE, PP).

- For bigger NPs that are bound in polymer matrices with relatively high dynamic viscosity, the migration will not be detectable.

- This corresponds to nanosilver composites with PET and PS, and surface-modified montmorillonite embedded in various polymer matrices.

Sensor platform for the NPs toxicity: Project H2020 HISENTS

Toxicity – depends on the concentration of NPs and contact time **Physiologically Based PharmacoKinetic model**

PBPK model – a multicompartment model:

Description of :

Adsorption Distribution Metabolism Excretion

of chemical substances in an organism via a series of differential kinetic equations **Parameters for the model – from the sensor platform -***Human on a chip*

Conclusions

1. Nanomaterials – may enter unusual sites in the body

2. Biopersistent nanomaterials may accumulate

3. Packaging – sources of NPs: filler, matrix
4. Toxicity of nanomaterials – not fully clear in many cases

5. Sensor platform for NPs toxicity – measuring the response of cells and modelling the response of mammals – *human on a chip*

Acknowledgements:

- COST Action FP1405 ActinPack
- H2020-NMP-29-2015: High level Integrated SEnsor for NanoToxicity Screening (HISENTS)

Some publications:

 Šimon P. & Joner E., *Journal of Food and Nutrition Research* 47 (2008) 51-59: Conceivable interactions of biopersistent nanoparticles with food matrix and living systems following from their physicochemical properties.
 Šimon P., Chaudhry Q. & Bakoš D., *Journal of Food and Nutrition Research* 47 (2008) 105-113: Migration of engineered nanoparticles from polymer packaging to food – a physicochemical view.

Thank you for your attention!

peter.simon@stuba.sk