

COST Action FP1405

Active and intelligent fibre-based packaging – innovation and market introduction

Label as detector of bacteria - what future in smart packaging?

Isaure Guerra

3rd year engineering student at Pagora

Introduction

Can we introduce label as detector of bacteria in the actual market?

Goals of these labels:

- Inform the consumer
- Reduce food vast
- Reduce epidemic risks

Graphique 1: Proportion des différentes étapes de la chaîne alimentaire dans la production de déchets alimentaires dans les 27 pays de l'Union (calculs ITAS)

Index

- I. Bacteria detection
- II. Smart packaging and TTI
- III. TTI market
- IV. Label as detector of bacteria
- V. Market of these labels
- Conclusion

I. BACTERIA DETECTION

1. Traditional ways

We distinguish 3 ways:

- Methods based on crops and counts of bacteria
- Methods based on DNA (ex : PCR)
- Methods based on immunology (ex : ELISA)

➤ Not expensive ways, but need lot of time to quantify.

2. Bacteria detected

Bacteria	Products or risk area	Infectious dose (digested bacteria)	Incubation period
Listeria	Unpasteurised milkCrude meat and fish	< 1000	2 days to 3 weeks
Campylobacter	•Poultry and cattle bowels	400-500	2 to 5 days
Escherichia Coli	Rare meatDerivatives from raw milkApple juice, cider	<10	2 to 4 days
Salmonella	Milk and derivativesRaw eggsSeafood	15-20	12 to 24 hours
Bacilus cereus	•Non refrigerated food before cooking	-	1 to 24 hours
Clostridium	•Canteens storing hot food	-	-

II. SMART PACKAGING AND TTI

1. Definition of smart packaging and TTI

Smart packaging is able to:

- Watch the product
- Inform the consumer about the quality of the content

It contains a sensor/ indicator which react with environmental changes.

For example : Time-temperature indicators >> cold chain monitoring

2. Different types of TTI

Thermochromics inks indicators

- Indicators based on micro-organisms
- Fruits maturity indicators

III. TTI MARKET

1. Main actors in the TTI market

In France:

- UMR IATE INRA Montpellier / Nathalie Gontard,
- Minalogic Grenoble pole, and associated structures
- Plastipolis Oyonnax pole, and associated structures
- Industrial actors like Cryolog/Traceo

In Europe:

- Freshpoint and Bizerba in Switzerland,
- Timestrip in United-Kingdom.

This market is 95 % Business to Business.

2. Problems to solve

Coupling with limit date of consumption>> two indications which can be contradictory.

Example of commercialisation in France:

- Monoprix : TTI on fresh products
- Picard: freshness chip on frozen food
- Carrefour: milk board bottles

IV. LABEL AS DETECTOR OF BACTERIA

1. Direct detection of bacteria

Different technics:

- Coupling of an antibiotic with a fluorescent agent
- Coupling of a sugar with a fluorescent agent

22/11/2016

Escherichia coli mark by modified KDO sugar and fluorescent agent

2. Indirect detection of bacteria

Different technologies:

- Detecting of gas emitted by bacteria:
 putrescine and cadaverine or rotten fish smell
- Barcode created by SIRA technology

V. MARKET OF THESE LABELS

1.Porter diagramm

2. SWOT matrix

Strength	Weakness	
Speed of the analyseSpecificity of the detectionDetectable by the consumer	 Unrecyclable Cost Depending on the type could be not compatible with sanitary regulations 	
Opportunity	Threat	
 Growth of the packaging sector which leads to a growth of labels sector Demographic growth Laws which imposes to have a quick detection Epidemic risks increasing 	 TTI Low cost of the TTI Laboratory analysis becoming faster and still low cost Wholesale increasing 	

Conclusion

Summary:

- Growth of the packaging market
- > Sanitary regulations are becoming more stringent
- > Food waste is an important issue to solve

Different perspectives:

- End of packaging
- DLC replaced by label detector of bacteria
- Too high cost of fabrication >> small market

Thank you for your attention

