

COST Action FP1405

Active and intelligent fibre-based packaging – innovation and market introduction

Manufacturing and measurement of superhydrophobicity for paperbased active packaging

Charlène REVERDY, PhD student, LGP2

STSM project partners

Expertise on **nanocellulose** and paper technology. Special interest in **active packaging** with antimicrobial properties.

Involved persons: Julien Bras, associate professor Charlène Reverdy, PhD student

"Chemistry, Materials and Surfaces"

Expertise on **surface modification** and formulation of coatings, advanced **assessment of surface functionality** and materials properties.

Involved persons:
Agne Swerin, research director
Maziar Sedighi Moghaddam, post-doc

PROJECT GLOBAL PLAN

INTRODUCTION - WHAT IS NANOCELLULOSE?

INTRODUCTION - WHAT IS SUPERHYDROPHOBICITY?

Low water adhesion
Water contact angle > 150°
Water Roll-off angle < 10°

A SUPERHYDROPHOBIC COATING THAT REPELS LIQUIDS

INTRODUCTION - WHAT IS SUPERHYDROPHOBICITY?

- A contact angle measurement is done ideally with (Young Θ_E):
 - Plane surface
 - Chemically homogeneous surface

- Actually, contact angle is affected by surface roughness.
 - Surface with a r roughness (Wenzel) $\cos \theta' = r \cos \theta_E$
 - <u>Surface non chemically homogeneous</u> (Cassie Baxter)

 $cos\theta' = f_1cos\theta_1 + f_2cos\theta_2$ f_1 et f_2 probability to encounter solid 1 or 2, and Θ_1 and Θ_2 Young angle for eache solid. (Air pocket model)

Surface wettability can be control by roughness and chemistry

STSM PROJECT

MATERIAL AND METHODS

METHOD

Image recording of a controlled water drop. Tilting of the surface controlled.

Force measurement during penetration of the sample in the known liquid

OPTICAL CONTACT ANGLE

Static, Roll-off, Water Shedding Angle, Advancing and receding

WILHELMY PLATE

Advancing and receding angles, wettability (multicycles)

MATERIAL AND METHODS

PROBLEM Nº1: Facing dry matter content

PROBLEM N°2: Oleate excess disrupt CNF-AKD hydrophobization

Rod Coater

RESULTS

Water adhesion probably due to CNF high affinity with water (even after hydrophobisation) and/or enlargement of pitch

RESULTS

Water shedding angle

Static water contact angle

- Superhydrophobic static contact angle obtained but not roll-off (Water shedding yes)
 - More a « rose petal effect »
 - Leaching of PCC observed

SCIENTIFIC VALORIZATION

- Poster presentation at N.I.C.E conference, October 2016, Nice, France
- Conference on material science based on biomimetism

"Superhydrophobic surfaces manufacturing with nanocellulose"

 Adaptation of LGP2 laboratory tools for measurearement of superhydrophobic properties

PERSPECTIVES ON THE PROJECT

- Assessement of bacterial adhesion and growth on a superhydrophobic surface with antimicrobial and non-antimicrobial CNF
- Stronger hydrophobization of CNF, not interacting with fatty acid

THANK YOU FOR YOUR ATTENTION

