"Existing technologies and current developments in active and intelligent packaging"

Paper Packaging based on Photoactive Inorganic Nanoparticles: activity and influence on End of Life options

Joana Mendes NEWGENPAK project, FP7/2007-2013 INNOVHUB-SSI, Paper Division, Milano, Italy

WG3 - LCA/ Sustainability issues, health and safety

Innovazione e ricerca

15-16 September 2015

Degradation caused essentially by bacteria, fungi and contaminants:

- Bacillus, Enterobacter, Lactobacillus, Leuconostoc, Pseudomonas, Sarcina, Staphylococcus, Streptococcus, Candida, Saccharomyces, among other species.
- Medical packaging: preventing medical cross contamination

prevent product spoilage by antimicrobial effect

vazione e ricerca

Potential targets:

Food packaging: fruits, vegetables, flowers

Outline

Studies on the antibacterial effect of TiO₂ NPs coated paper

- Influence of the storage conditions
- Hydrophilic vs. Hydrophobic paper

Development of photo-active TiO₂/NFC coating formulations

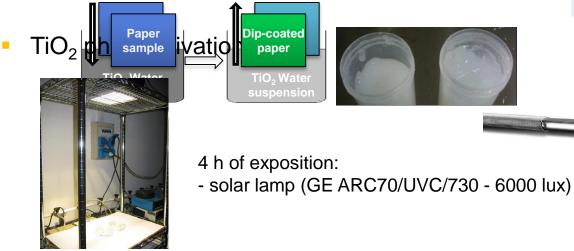
- Direct Mixture vs. LbL approach
- Antibacterial activity

Industrial Pilot trial at Multipackaging Solutions (UK)

- Development of an active overprint varnish formulation
- Antibacterial assessment of paper-based packaging with ZnO active nanoparticles

Considerations on the impact on End of Life options

- Biodegradability
- Recyclability



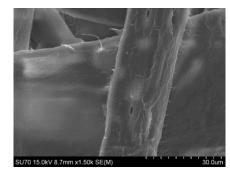
Methodology

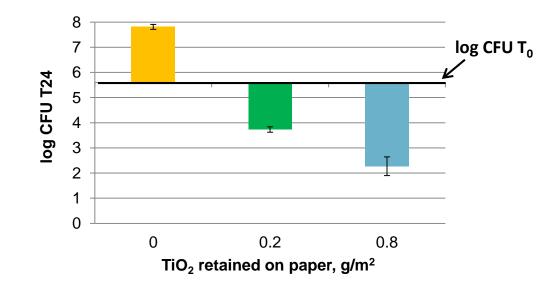
- Functionalization of the paper surface with TiO₂ NPs
 - Dip-coating: physical adsorption of inorganic nanoparticles
 - Rod-coating: previous inclusion of nanoparticles in the NFC

Sample	Grammage (g.m ⁻²)	Cobb60 (H ₂ O.m ⁻²)
BK	120	74.45
BPK	300	8.42

Antibacterial activity

Based on AATCC Test Method 100-1998.

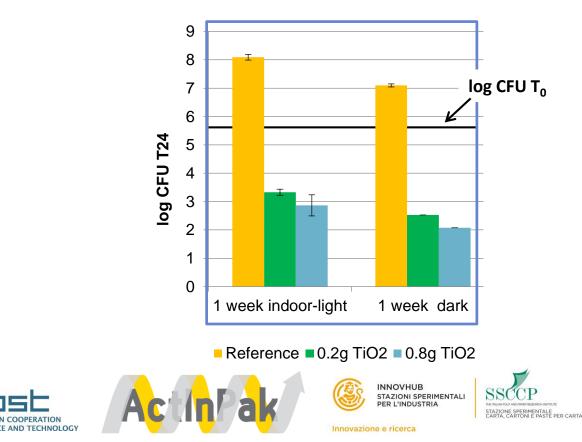



Antibacterial effect of TiO₂ NPs coated paper

Bleached Kraft paper - BK

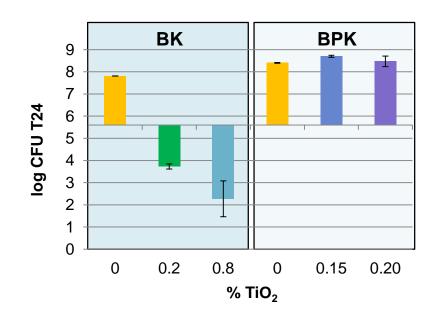
S. aureus	log T _o = 5.6
Sample	R
BK1	4.1
BK2	5.5

Reference - BK


Antibacterial activity: Influence of the storage conditions

Influence of the storage conditions over time: Indoor-light vs. dark
1 week

Bactericidal effect for both indoor-light and dark conditions.


3 weeks:

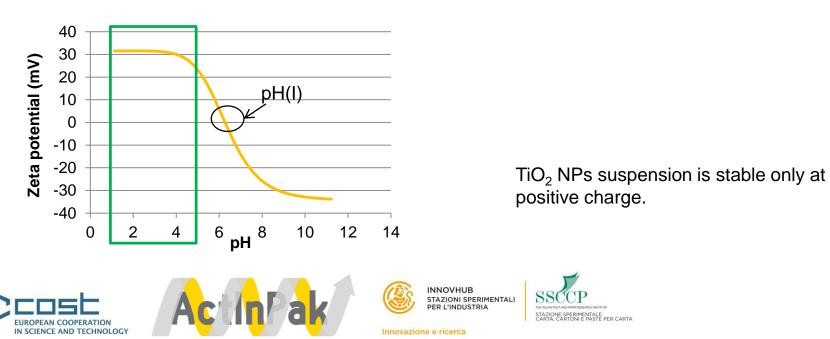
The bactericidal effect continues and is independently of the storage conditions.

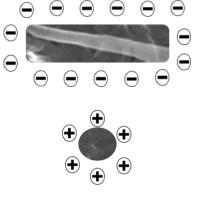
Antibacterial activity: Hydrophilic vs. Hydrophobic paper

Bleached Kraft paper (BK) versus Bleached pre-coated Kraft paper (BPK)

S. aureus	log T _o = 5.6
Sample	R
BK1	4.1
BK2	5.5
BPK1	0
BPK2	0

<u>BPK - Drawbacks</u> Lower Cobb 60 – hydrophobic paper Non-homogenous coating

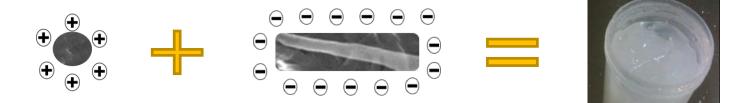

THE INLAW PLUP AND AMPER RESEARCH METHUDE STAZIONE SPERIMENTALE CARTA, CARTONI E PASTE PER CARTA


Development of photo active TiO₂/NFC coatings

Advances in the use of NFC as a binder for rod-coating formulations

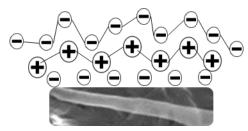
- NFC nanofibrillated cellulose
 - Negatively charged surface
- NPs suspension
 - Initial conditions: 6%TiO₂, pH = 1
 - Positively charged

Electrostatic behaviour of the NPs suspension



TiO₂/NFC coating formulations

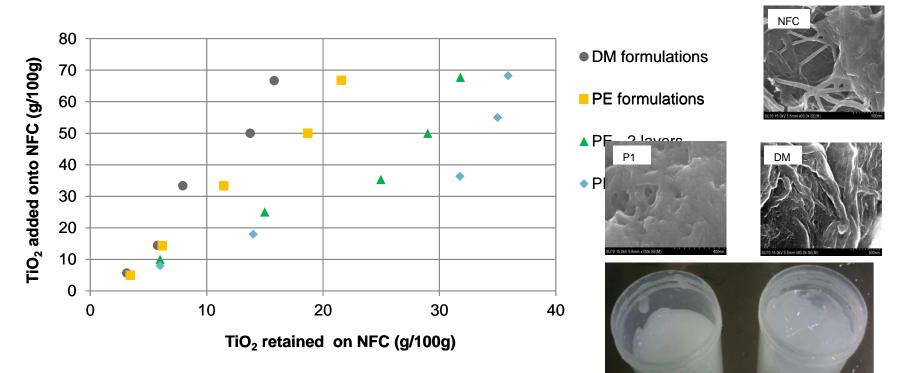
Direct mixture


Deposition of inorganic nanoparticles onto the NFC fibres surface

IDEA: Increase the retention of NPs on NFC

- Layer-by-layer assembly LbL approach
 - By modification of NFC:
 - 1. Polycation solution (PDDA)
 - 2. Polyanion solution (PSS)

Increasing the negative charge of NFC



Direct Mixture vs. LbL approach: retention efficiency

Relation on the %TiO₂ retention by NFC

- DM formulations: just 25% of retention efficiency;
- PE type formulations presents a better efficiency for higher quantities of TiO₂ added to NFC;
- PE-3 layers shows the highest electrostatic interaction with a maximum of 90% of NPs grafted onto NFC.

Antibacterial activity

BPK paper samples rod-coated with TiO₂ /NFC coating formulations

S. aureus	log T _o = 5.6
Sample	R
0.7 g TiO ₂	1.8
4.1 g TiO ₂	2.7

Bacteriostatic effect

- Inhibition to bacterial growth (≈ 2 log bacterial reduction) is verified on paper surfaces with 0.7 g of TiO₂ NPs per square meter;
- Antibacterial effect increases for higher concentrated samples.

 \checkmark Possibility to develop contact active surfaces

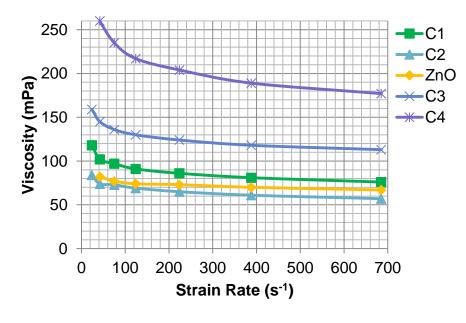
Industrial Pilot trial at Multipackaging Solutions

Development of an active overprint varnish formulation based on ZnO nanoparticles

flexography printing

Target

Medical packaging to prevent cross contamination in hospitals

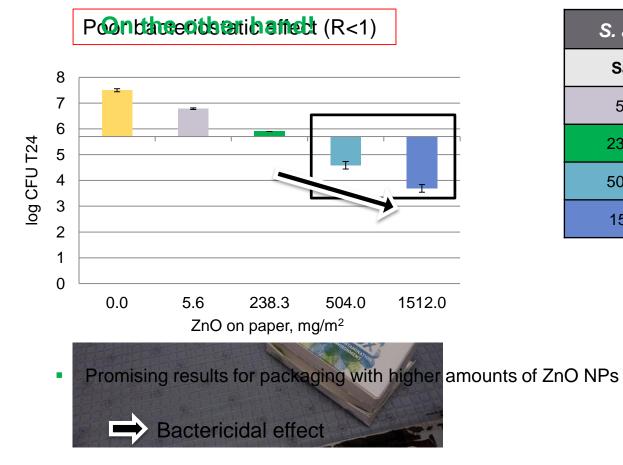


Development of the overprint varnish

Industrial trial – considerations

- Inorganic nanoparticles were chosen due to their commercial availability and good compatibility with industrial needs (e.g. absence of odour);
- TiO₂ was not compatible with the commercial varnish used at the industrial installation;
- ZnO was found compatible with the commercial varnish and had the advantage of being less sensitive to photo activation (dual antibacterial mechanism).

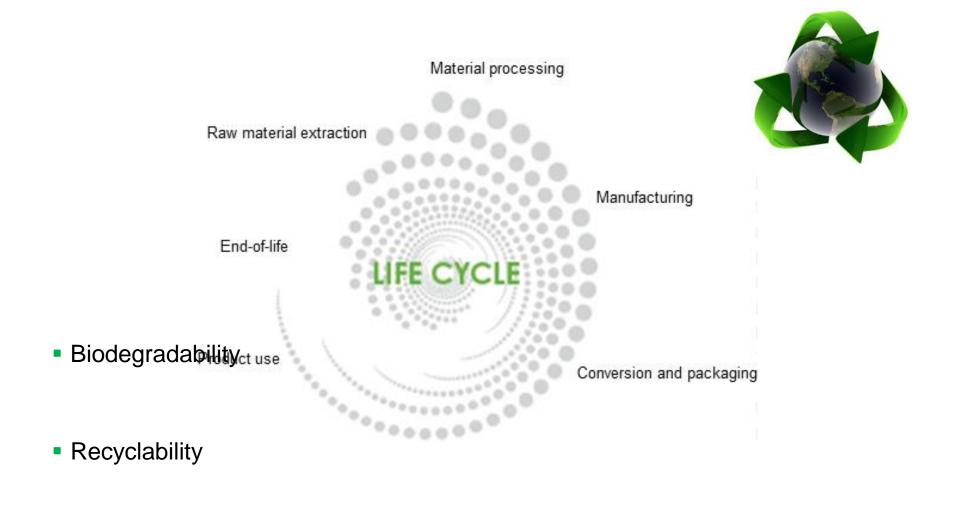
Relatively good viscosity behaviour when up to 10% of the varnish was replaced by ZnO formulation.



Antibacterial activity

Paper-based medical packaging with ZnO active nanoparticles - SAFEBOX

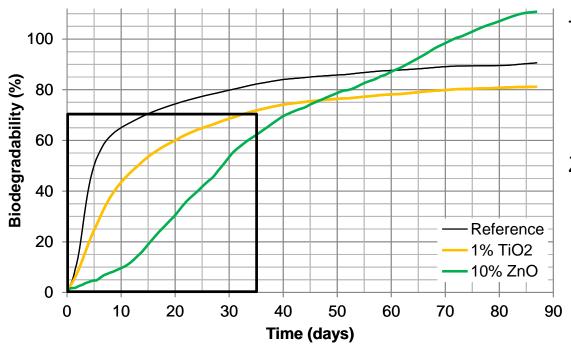
S. aureus	log T _o = 5.8
Sample	R
5.6 mg	0.7
238.3 mg	1.6
504.0 mg	2.9
1512 mg	3.8



Innovazione e ricerca

INNOVHUB STAZIONI SPERIMENTALI PER L'INDUSTRIA

Considerations on the impact on End of Life options


Innovazione e ricerca

SSECCP THE TRULIN ALS MOTIVITE RESEARCH REITITUTE STAZIONE SPERIMENTALE CARTA, CARTONI E PASTE PER CARTA

Biodegradability

Deste the mandpartic/ESO/fleets5/lezBiblegrandability??

The Biodegradability behaviour maybe due to:

- Concentration of NPs
- Type of NPs

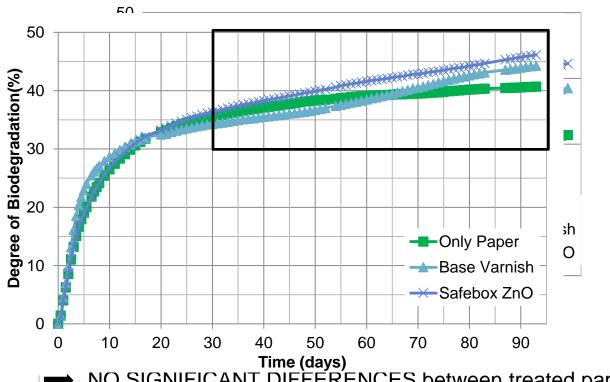
TiO₂ coated paper vs. reference:

- similar kinetic behaviour;
- lower degradation rate;
- final degradation rate almost reach the 90% pass level.

ZnO paper samples:

- clear delay in starting the degradation phase;
- after 10 days, the degradation rate increases more rapidly;
- reach a final degradation rate of more than 100% - normally related to the excessive production of CO₂ on the compost (priming effect).

The presence of active ingredients do not necessarily prevent the biodegradation of the material, however more experiments should be done to achieve any conclusion.



Biodegradability

Does the nanoparticles affects the Biodegradability??

NO SIGNIFICANT DIFFERENCES between treated papers and reference!

The inclusion of ZnO nanoparticles, at these concentration, does not reduce the final biodegradation

Recyclability of active packaging material

Test carried out on Kraft paper functionalized with TiO₂ NPs

Aticelca method MC 501-13

To understand where the nanoparticles goes!

- To the water stream, or
- Retained in the fibres?

Sample	TiO ₂ , g/m ²
Initial sample	1.47
Recycled sample	1.31

≈ 90% of TiO₂ NPs stay attached in the cellulose fibres by electrostatic interaction.

Conclusions

- Photoactive TiO₂ nanoparticles can be directly deposited on hydrophilic bleached Kraft paper achieving strong antibacterial contact active surfaces;
- The bactericidal effect last several weeks after activation, under light or dark conditions;
- TiO₂/NFC based coatings formulations can be used for hydrophobic paper samples. They can be developed by direct mixing, however polyelectrolyte-assisted deposition by LBL assembly is a good option to increase retention (90% retention efficiency against 25%);
- The industrial trial performed with an active overprint varnish formulation based on ZnO nanoparticles showed a relatively poor inhibitory effect;
 - Future work will focus on finding suitable varnish components thus increasing ZnO concentration.

Packaging End of Life options

- Recyclability tests proves a very good retention of TiO₂ nanoparticles in the fibres.
- Laboratory tests showed only marginal effect of active ingredients on biodegradability performance.

Thanks for your attention!

joana.mendes@mi.camcom.it

joanasmendes@gmail.com

www.newgenpak.eu www.innovhub-ssi.it

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n^o: 290098.

COST Action FP1405 Active and intelligent fibre-based packaging – innovation and market introduction (ActInPak)

ActInPak is a pan European (COST) network of the leading experts in active and Intelligent packaging of over 50 institutes and universities of 28 different countries.

The main objective is to develop a knowledge-based network on sustainable, active and intelligent fibre-based packaging in order to overcome current technological, industrial, and social limitations that hinder the wide deployment of existing and newly developed solutions in market applications.

http://www.cost.eu/COST_Actions/fps/Actions/FP1405

http://www.actinpak.eu

https://www.linkedin.com/groups/COST-FP1405-ActInPak-8254568/about

